
THE JOURNAL OF VISUALIZATION AND COMPUTER ANIMATION, VOL. 3: 31-43 (1992)

Choreographed Image Flow

KARL SIMS

Thinking Machines Corporation, 245 First St., Cambridge, MA 01242, U.S.A. and
Digital Animation Laboratory, 725 N. Highland, Ho//ywood,CA 90038, U.S.A.

SUMMARY

Choreographed fluid-like motions have been created and used to animate two dimensional images.
Techniques are presented for generating these animations by repeatedly warping images using vector
field representations of arbitrary flowing motions. Tools that allow interactively creating and aligning
vector flow-fields with images are also described. These methods lend themselves well to highly parallel
computation, and have been implemented using the Connection Machine System.

1. INTRODUCTION

Many techniques have been developed for warping and distorting images for various
purposes in areas such as image processing, computer vision, medical imaging and
computer graphics. Here, warping will mean a resampling or mapping of a 2D source
image onto a 2D destination image. Texture mapping is a common computer graphics
use of warping in which images are projected onto 3D surfaces and then onto the
image plane. 1

•
20 Developments have been made towards increasing the efficiency of

certain kinds of warping transformations, such as those used for texture mapping.2
-6

The techniques presented here include uses of arbitrary warping transformations
and repeated warping of images to generate frames of animation.

A simulation of the planet Jupiter in the film 2010 contained an example of
animation that could be considered as repeated image warping. A 2D particle system
was used to model fluid motion and warp an image of Jupiter's surface. The initial
states of the particles were set by vortex descriptions, fluid dynamics modelling was
used to flow the particles, and the surface was remapped by re-rendering the moved
particles. 7

Oriented patterns have been analysed to automatically create flow fields that align
with the directions of anisotropy in the patterns. 8 These flow fields can then be used
to manipulate the original image. 9

The warping motions described in this paper are completely choreographed. The
animator has control over the synthesis of each detail of motion. No automatic
analysis of the image to be animated is performed. Motions can be aligned to the
patterns, or not, as desired by the choreographer. No dynamics modelling is used,
but dynamically correct looking motions can still result with careful design. Motions
are represented in two dimensions, but three-dimensional looking motion can still

1049-8907/92/010031-14$12.00
© 1992 by John Wiley & Sons, Ltd.

Received 3 July 1991
Revised October 1991

32 K. SIMS

be created. Although the tools used here to flow and warp images have some
characteristics of particle systems, 10 they are probably more appropriately classified
as image processing techniques. They have been used to animate a selection of
Leonardo da Vinci's deluge drawings (Figure 1).

In this paper, capital letters will be used to represent 2D arrays such as images
or vector fields and small letters will be used for single scalars or vectors. Bold type
will be used to represent vectors and plain type will be used for scalars. For example,
X might be an image of colour vectors, X an image of single grey values, x a vector
and x a scalar. Subscripts will be used to represent indexed elements of arrays and
co-ordinate pairs will usually be concisely represented as co-ordinate vectors. For
example, if x = [u, v] is a co-ordinate vector, then V x would be the pixel of the
image, V, at [u, v]. A bold zero, 0, is used to mean a vector field with all zero
elements.

1.1. Forward and inverse mapping

An image warping operation can be specified by defining the relationship between
the source and destination image co-ordinates. Forward mapping defines the desti­
nation co-ordinates as a function of the source co-ordinates. Inverse mapping defines
the source co-ordinates as a function of the destination co-ordinates.

If the vector x = [u, v] denotes a pair of co-ordinates in the source image domain,
and F(x) is a forward co-ordinate mapping function which transforms the input
source co-ordinates x into the output destination co-ordinates x',

x' = F(x)

then the warping operation from a source n-dimensional image vector, V, to a
destination image vector, V', can be described as:

Figure 1. A deluge drawing of Leonardo da Vinci

CHOREOGRAPHED IMAGE FLOW

for each source element x:
VF(x) = Vx

33

In this simple implementation, the destination image will probably have serious
aliasing problems. If the source image is expanding, there will be some holes in the
destination image from unset destination elements. If it is contracting, destination
elements may be set by more than one source element. Quantization of the desti­
nation co-ordinates will also contribute to aliasing. Some solutions to these problems
will be discussed below. An arrow will be used to imply that the elements of V' at
all destination co-ordinates are somehow set and filtered.

V
I

F(x) +- V x

If G(x) is an inverse co-ordinate mapping function which transforms destination
co-ordinates, x', into source co-ordinates, x,

x = G(x')

then the warping operation can be performed directly with unique source co-ordinates
calculated for each of the destination co-ordinates:

for each destination element x':
V�, = Vc(x')

Aliasing problems can also occur with inverse mapping. If the source image is
contracting, the destination element should receive an average over an area of the
source image instead of a single element. If the source image is expanding, the
destination should receive a value by interpolating among at least four source element
neighbours. Texture mapping is a common example of inverse mapping. Summed
area tables, 11 mip mapping 12, and other techniques, 13--- 14 have been used extensively
as successful solutions to these inverse mapping aliasing problems.

Some forward mapping functions are separable into a series of one dimensional
transformations. This can permit the warping computation to be performed with
increased efficiency. 2-4 Separability will not be considered in this paper because the
warping functions used will be arbitrary and not necessarily possible to separate.

Section 2 of this paper presents a forward mapping function to perform arbitrary
image warping. Section 3 introduces an operation to alter vector fields with an
inverse mapping component. Section 4 addresses methods for the creation of complex
fluid-like motions. Some techniques for visualizing and constructing vector fields will
be described in section 5. And finally, data parallel implementation, results, and
future extensions of this work will be discussed.

2. IMAGE WARPING

Image warping with arbitrary forward mapping functions has been implemented
using a lookup array. The lookup array is a vector field containing the relative
displacements for each element in the source image. 1f the vector field describing
the warp to be performed is W = [wu , wv], then the forward co-ordinate mapping
function is

34 K. SIMS

x' = X + Wx

and a destination image, V', can be set from a source image, V, by:

for each source element x:
V (x + W x) � V x

A function warp will be a useful definition. It will perform this warping operation
above such that

V' = warp(V ,W)

Since warp can remap any image of n-vectors, V, it can be applied to grey-scale
images, 3-element colour images, colour images with mattes, or even other 2-element
vector fields.

As previously mentioned, forward mapping can result in aliasing problems from
expansions, contractions, and quantization of destination co-ordinates. Warp per­
forms anti-aliasing using a weighted average to handle quantizations and contracted
regions, followed by a diffusion to fill in holes from expanded regions.

First, each source pixel calculates its destination coordinates x' at subpixel accu­
racy, using the element, W x, of the warp vector field of relative displacements. The
four neighbouring destination pixels nearest to x' are determined and weights equal
to one minus the distances of x' to each of them are calculated.

Then, each source pixel sends its value to each of the four destination pixels pre­
multiplied by the corresponding weight. The destination pixels sum these products
received from some number of source pixels. The four weights themselves are also
sent to the destination pixels such that each destination also receives a sum of all of
the weights sent to it. The destination pixels then divide their total weighted value
sums by their total weight sums to get final values containing weighted contributions
from any source samples mapped nearby. This is similar to resampling an image
using a triangle filter.

This forward mapping technique deals well with contractions in the vector field
because arbitrarily large areas can be appropriately averaged down into smaller
regions. However, if the vector field contains expansions or if the border of the
image is pulled back, some destination elements may not receive any values or
weights. A diffusion process is performed to spread the values to destination elements
that received few or no weighted values from those that did until every element has
a value that is an appropriate weighted average of mapped source values.

For each diffusion iteration, each pixel adjusts its weight sum and its weighted
value sum using averages of those quantities from its four adjacent neighbours. This
is an iterative blur in which pixels force their values and weights on each iteration
to be a percentage of their original values and weights, where the percentage equals
their original weights. When the new weight sum of a pixel is sufficiently large, that
pixel stops being affected by diffused values from its neighbours. The diffusion stops
when all the new weights have reached sufficient values. Finally, the diffused
weighted values are divided by the diffused weights to give the final warped values.

A potential disadvantage of this diffusion method is that if an image is being
expanded anamorphically, the diffusion will still spread values at equal speeds in

CHOREOGRAPHED IMAGE FLOW 35

each direction. This could cause some inappropriate blurring. Interpolating the
source image and the vector field to generate a small grid of samples (2 x 2 or
3 x 3) for each pixel can alleviate this problem if necessary with some additional
cost in computation time. An adaptive approach might be preferable, where the
local number of necessary samples is determined by first estimating the amount of
local expansion in the vector field.

In an attempt to create a series of images for an animation sequence we might
repeatedly warp an image, 1°, by the same flow-field, W, containing a small amount
of movement. If the images I", [n = 0, 1, 2, 3 ...], are the successive frames of an
animation:

1° = image
W = flow field

1 1 = warp(1°, W)
12 = warp(I', W)
13 = warp(F, W)

This might look interesting for the first few frames, but each warp would cause
irreversible blurring due to resampling and filtering. Since each frame depends on
the previous, this is not acceptable.

3. IMAGE FLOWING

This section presents a method for repeatedly rewarping an image with significantly
less degradation than shown above. Instead of each frame, I", depending on a warp
from the previous frame, 1"- 1

, the effects of multiple warps are preserved at sub­
pixel accuracy in a vector field so the frames can all be calculated by warping only
the original image, 1°.

A function flow will help achieve this. It increments a vector field by the value
of a second vector field at the relative location of the vectors in the first vector field.

If W = [W", wv J is now a source 20 vector field, W' is a destination 2D vector
field, and F = [F11

, Fv) is a 20 vector flow-field, then

W' = flow (W, F)

where flow performs the following operation:

for each destination element x:
w: = W x + F(x + Wx)

If the flow-field, F, is used to warp an image, 1°, three successive times:

13 = warp(warp(warp(J<',F),F),F)

the same result with much less blurring can be achieved with three flow operations
followed by a single warp:

13 = warp(1°,Jlow(flow(flow(0,F),F),F))

36 K. SIMS

I /_ �
'

V/4\J t t

\ � '.>1/
' '

Figure 2.

The bold arrows labelled 1, 2, and 3 in Figure 2 represent the successive contents
of a single element of the vector field, W, being flowed three times by the vector
field, F, represented by the plain arrows. Each flow operation pushes the co-ordinate
elements of W one step further along in the patterns described by F. Note that
warp(X,O) = X, and flow(O,F) = F.

The flow calculation has an inverse co-ordinate mapping component. Like warp,
this is an arbitrary mapping defined by the relative displacement elements in the
provided vector field, but unlike warp, it is an inverse mapping instead of a forward
mapping, and it causes a vector field to be incremented using a second vector field.
It is performed as follows.

First, each destination element, W x, calculates the source vector co-ordinates, x
+ W

x
at sub-pixel accuracy. Values from the four neighbouring elements of the

source vector field, F, nearest these co-ordinates are retrieved. Bi-linear interpolation
between these gives the final value, Fcx + wx)which is then added to the first vector
argument for its new value W� (see Figure 3).

.A::.-..:..W�x:.,.·---,EJ

F

Figure 3.

Some of the inverse mapping aliasing problems discussed above could still occur
using this procedure. Techniques to retrieve an average over an area of the source
vector field have not been implemented because the vector fields used did not
contain many discontinuities or high frequencies. Similar to the technique suggested
above for warp, interpolation between vector field elements to generate and average
multiple samples could be performed if necessary to alleviate this problem.

Combining the use of the flow and warp operations will allow the frames of an
animation to be calculated as before. Warp will always be performed on the original
image but with an incrementally updated warping vector field:

1° = image
F = flowfield
W = 0

W = flow(W ,F)
1 1

= warp(l0 ,W)

W = flow(W ,F)
12

= warp(l°,W)

W = flow(W,F)
13

= warp(l0,W)

CHOREOGRAPHED IMAGE FLOW

4. SECOND ORDER FLOWING

37

More complex types of .motions can be created than by simply rewarping an image
by a single flow-field. A useful variation is to also put the flow-field into motion by
using a second-order flow-field.

A simple, quickly degrading version of second order flowing using only warp
would be as follows:

1°
= image

F = flowfield
F2 = 2nd order flowfield

For each frame n:

F = warp(F ,F2)
I" = warp(l"- 1 ,F)

A higher quality version using both flow and warp would be

1° = image
F = flowfield
F2

= 2nd order flowfield
W = 0

w
2 = o

For each frame n:

W2
= flow(W2,F2)

W = flow(W,warp(F,W2))
I" = warp(l0

, W)

W2 is repeatedly updated to contain the cumulative effect of F2 , which warps the
elements of F, while W is updated to contain the cumulative effect of F, which in
turn warps 1° , such that each new frame can still be warped from the initial image.

A variation of 2nd order flowing is achieved by adding F2 to the warped F before
updating W:

38 K. SIMS

For each frame n:

W
2

= flow(W2 ,F2)
W = flow(W,warp(F,W2) + F

2)
I" = warp(l0,W)

This causes the second order flow to move the image as well as the first order flow.
Without adding F

2
, the first order flow will move through the image without the

second order flow also pulling the image along.
Many other possibilities for complex types of motions exist. Layers of flowing

motion can be composited together by flowing images with matte channels. Flow­
fields can be scaled to vary the speed of motion.

5. FLOW-FIELD CONSTRUCTION

In the previous sections, the use of flow-fields to warp and animate images has been
described. In this section the interactive creation of flow-fields that can be used to
give desirable motion will be addressed.

The contents of a constructed flow-field should align well with the image that it
will warp. Large motions over the entire image should be possible as well as
small detailed motions. Ideally, the interface for flow-field manipulation should be
intuitive, visual, and efficient, such that complex motions can be created on a
practical time scale. An attempt to achieve these goals is described.

Visualization of a flow-field is an important component of this flow-field construc­
tion system. It can be achieved in two ways. First, the magnitude of the flow-field
elements can be displayed as a monochromatic image. This allows the other colour
channels of a full colour display to be used for other information. Plate 1 shows the
original image displayed in blue with the flow-field magnitudes aligned and displayed
in green. The red channel remains available for interactive use.

Secondly, the elements of the flow-field can be transformed into a full colour
image and displayed communicating the flow-field direction as well as its magnitude.
The vector direction of the flow-field is used to calculate the hue and the vector
magnitude controls the brightness, as shown in Plate 2.

The interactive process for building a flow-field is as follows: First, a flow-field
to be constructed is created and initialized, either to 0, or by copying the contents
from an existing flow-field.

An active region is defined using a paint system. A soft-edged brush paints over
a region where the flow-field will be altered. The active region is essentially a matte
containing percentages for each pixel of the image or each vector of the flow-field.
The active region is set from a single colour-channel of the painted image. The other
two colour channels can contain the image to be warped, or an image representing
the partially constructed flow-field as described above, so the active region can be
carefully aligned to the image or to the flow-field as shown in Figure 4.

Three operations, translate, expand and vortex, are used to alter the flow-field
using the active region and various parameters. They first create a temporary flow­
field using specified parameters, then matte it onto the flow-field being constructed
using the active region.

Translate simply creates a region of motion in a specified constant direction.

CHOREOGRAPHED IMAGE FLOW 39

Figure 4. An active region is defined by painting an area

Expand creates a region of expanding motion by scaling outward from a specified
centre. The centre of reference can be entered numerically, pointed to with a mouse
(Figure 4), or automatically calculated as the centroid of the region. A contraction
can be created using the expand operation with a negative scale parameter (see
Figure 5).

·--

Figure 5. Expansions and contractions

The vortex operation creates a region of vortex motion using the parameters
centre, magnitude and tightness. The centre can be specified with the same options
as expand. An angle 0 is calculated from the distance, r, between each element and
the vortex centre.

magnitude
e

= ytightness

The tightness parameter usually varies between 1 ·O and 2·0. The final vectors are
calculated by rotating each element's co-ordinates about the centre by the angle e,
and then subtracting the previous value. An optional stretch parameter allows non­
uniformly scaling the vortex motion to create elliptical vortices and can help achieve
3D looking motions (see Figure 6). A problem that can occur in vortex motions,
especially if the flow-field is later scaled to alter the speed of motion, is that the

40 K. SIMS

Figure 6. Vortices

vortices may slightly expand or contract at the centres due to the quantization of an
ideally continuous rotation into translational segments.

The function that composites these motions onto the flow-field can have some
variation. The matte of the active region can be scaled by different amounts for
weighted averaging between the previous flow-field and new flow-fields created with
the operations above. Since the matte is painted with soft-edged brushes smooth
transitions between different regions in the resulting vector field usually occur. The
active region matte can optionally be blurred to cause even smoother transitions if
necessary.

Another utility is used to create multiple regions of similar motion more easily.
Multiple separate regions are painted at once with a soft-edged brush. A simple
connected component labeling technique is used to find each isolated region. One
at a time, each separate region is treated as the active region, and a vortex or expand
operation is performed using it with its centroid as the centre of reference (see
Figure 7). This allows faster creation of complex motion with many similar details,
such as clouds with multiple expanding regions, or water with multiple vortices.

Some other techniques for achieving 'painting' of flow-fields were attempted but
were not successful. One method tried was directly painting a colour representation
of a flow-field, as is used to visualise it, and then transforming that into the flow­
field, but this was not successful because creating smooth washes between colours

Figure 7. Multiple regions are painted to be similarly processed

CHOREOGRAPHED IMAGE FLOW 41

in arbitrary shapes was time consuming and not intuitive. Setting the flow-field using
the brush velocity was also attempted but was not used because it was difficult to
accurately and smoothly control the brush velocity with the paint system available.

Although it might still be useful to extend the library of utilities beyond those
mentioned here, they have been used to successfully create a wide variety of motions.

6. PARALLEL IMPLEMENTATION

These techniques have been implemented using a Connection Machine System (CM-
2), a data parallel supercomputer consisting of between 4K and 64K processors. 15-17

Special routeing hardware allows general communication between processors. A
virtual processor mechanism is used to simulate more processors than the physical
number so the virtual machine size can vary depending on the number of data
elements in the application. For example, a 512 x 512 image in an 8K processor
machine would require a virtual processor set with 32 virtual processors per processor
to contain the image, with one pixel in each virtual processor.

The images and vector fields described above are processed in parallel in a single
2D virtual processor set with dimensions equal to the image dimensions. Each virtual
processor contains one element of every image and vector field in use, such that the
elements in different images or vector fields with equal indices are in the same
virtual processor.

Three primitive interprocessor communications are used for choreographed image
flowing: send, get, and news. Send delivers a value, from each selected processor,
to a specified destination processor-address. Get retrieves a value, for each selected
processor, from a specified source processor-address. Send can also combine values
sent to equal destinations in various ways. Send with add causes the values sent to
equal destinations to be summed as they are delivered. The forward mapping warp
function is implemented in parallel using send with add, and the inverse mapping
flow function is implemented using get. News (North, East, West, South) performs
nearest neighbour grid communications and is used for the diffusion component of
the warp function.

Images of 256 x 256 resolution can be processed and tested using the flow and
warp functions on the Connection Machine system at near real time rates.

7. RESULTS

These tools have been used to create animations of fluid-like motions applied to the
deluge drawings of Leonardo da Vinci (Figure 1). 18 The methods using second order
flow-fields described above were applied for these animations. A first-order flow­
field was constructed which usually contained the smaller details of motion such as
vortices and slight expansions and contractions. A second-order flow-field was
constructed usually with motions on a larger scale. This allowed hierarchical motions
to be created such as vortices of vortices.

Fluid motions of wind and water were created using many vortices and a second
order flow-field to flow the vortices.

Boiling cloud motions were created using multiple small expansions and contrac­
tions, and a second order flow containing some larger elliptical vortices, expansions,
and contractions.

42 K. SIMS

Although accumulating the effect of successive warping with flow helps maintain
image quality, eventually the image becomes distorted well beyond the original.
Expanding areas become blurry and vortices get twisted up. A useful trick to generate
longer sequences of continuous animation is to flow the image both forwards and
backwards. A forward sequence is generated by flowing an image until it becomes
distorted beyond acceptability. Then, a backwards sequence is generated by negating
the flow-fields before proceeding. The two sequences are spliced together, back to
back, with the second sequence reversed, so that the original image is in the centre,
giving twice as much undistorted duration.

8. FUTURE WORK AND CONCLUSION

There are many possible extensions to the utilities described in this paper. An
elaborate paint system specifically designed for 'painting' 2D flow-fields instead of
colours could be developed. Instead of just painting the active regions and performing
operations on them, complex brushes of different shapes and sizes with various
parameters might be used to create flowing regions of different types. The ability
to copy and transform regions of flow to other regions would also be useful.

One might also imagine vector fields that cause different kinds of effects beyond
the second order flowing described, such as an acceleration field, which, instead of
warping a velocity-field, would cause its elements to be incremented.

A fluid dynamics simulation could be incorporated to generate flow-fields auto­
matically and help generate more realistic 2D fluid motions.

Extending this work to three dimensions would be an ambitious project because
of the vast amount of memory required to store 3D vector fields of significant
resolution, but the same methods used above for warping 2D images could be used
for 3D volume warping. 3D flowing motions created with this system might also be
applied to flexible 3D objects. 19

In conclusion, techniques have been presented for the interactive creation of
arbitrary flow-fields that can be used to generate animation from repeated image
warping. The functions warp and flow allow repeated warpings of an image to be
performed with a minimum of quality degradation. The processes used are easily
parallelizable and have been implemented on the Connection Machine system. As
data parallel computation becomes more affordable and available, techniques such
as these will hopefully become more practical and useful.

ACKNOWLEDGEMENTS

Thanks to Mark Whitney for providing an application that motivated the existence
of this system. Thanks to John Whitney Jr. and Digital Animation Laboratory for
the environment to produce this work, and for permitting it to be published. Thanks
to John Ornelas for being a successful user of this system. And thanks to Lew
Tucker, Guy Steele, Jim Salem, Dave Sheppard, Gary Oberbrunner, and Thinking
Machines Corporation, for support and encouragement.

REFERENCES

1. J. Blinn and M. Newell, 'Texture and reflection on computer-generated images', Communications
of the ACM, 19, (10), 542-547 (1976).

2. E. Catmull and A. R. Smith, '3-D transformations of images in scanline order', Computer Graphics,
14, (3), 279 (1980).

CHOREOGRAPHED IMAGE FLOW 43

3. A. R. Smith, 'Planar 2-pass texture mapping and warping', Computer Graphics, 21, (4), 263 (1987).
4. G. Wolberg, 'Separable image warping with spatial lookup tables', Computer Graphics, 23, (3),

369 (1989).
5. K. M. Fant, 'A nonaliasing, real-time spatial transform technique', IEEE Computer Graphics and

Applications, 6, (1), 71-80 (1986).
6. A. Paeth, 'A fast algorithm for general raster rotation', Graphics Interface '86 Proceedings, May

1986, pp. 77-81.
7. L. Yaeger and C. Upson, 'Combining physical and visual simulation-creation of the planet Jupiter

for the film 2010', Computer Graphics, 20, (4), 85-93 (1986).
8. M. Kass and A. Witken, 'Analyzing oriented patterns', Computer Vision, Graphics, and Image

Processing, 37, 362-385 (1987).
9. M. Kass and A. Witken, Knot Reel, Siggraph'86 Video Review.

10. W. T. Reeves, 'Particle systems-a technique for modeling a class of fuzzy objects', ACM
Transactions on Graphics, 2, (2), April 1983, reprinted in Computer Graphics I983, pp. 359-376.

11. F. Crow, 'Summed-area tables for texture mapping', Computer Graphics, 18, (3), 207-212 (1984).
12. L. Williams, 'Pyramidal parametrics', Computer Graphics, 17, (3), 1-11 (1983).
13. P. Heckbert, 'Filtering by repeated integration', Computer Graphics, 20, (4), 315 (1986).
14. A. Glassner, 'Adaptive precision in texture mapping', Computer Graphics, 20, (4), 297 (1986).
15. Thinking Machines Corporation, Connection Machine Model CM-2 Technical Summary, technical

report, May 1989.
16. W. D. Hillis, The Connection Machine, MIT Press, 1985.
17. W. D. Hillis, 'The connection machine', Scientific American, 255, (6), 108-115 (1987).
18. K. Sims, Excerpts from Leonardo's Deluge, SIGGRAPH '89 Video Review.
19. C. Reynolds, Ductile Flow, SIGGRAPH '90 Video Review.
20. P. Heckbert, 'Survey of texture mapping', IEEE Computer Graphics and Applications, 19, No.

10, 56-67 (1986).

Plate I (Sims). Comple1edflow-field is displayed in green ll'ilh !he drawing in blue

P/a1e 2 (Sims). Comple1edflow-field is visuali::ed using a full colour represe111a1ion

